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[Appendix (a)] it has been demonstrated that these 
terms are essentially equivalent to the inclusion of 
higher order multipole interactions, and that it is 
plausible to infer that their influence is most marked 
for the long-wavelength acoustic modes, whose fre­
quencies depend only on the elastic constants. It follows 
that both frequency distributions and dispersion curves 
should be almost unaffected, except in the low-frequency 
regions, and it would be interesting to test these 
assertions experimentally. 

I. INTRODUCTION 

WITH the advent of methods for generating and 
detecting ultrasonic waves at microwave fre­

quencies, it has become possible to study the interaction 
between lattice vibrations and electron spin systems 
directly. Such studies have been carried out by ob­
serving the effects of ultrasonic waves on paramagnetic 
resonance1,2 and, conversely, by noting the effects of 
paramagnetic ions on the propagation of ultrasonic 
waves.3"6 It is the purpose of this paper to discuss the 
latter phenomenon, and, in particular, to develop a 
theory of elastic wave propagation in a solid containing 
resonant spins. 

II. DISPERSION OF SOUND BY RESONANT 
SPIN SYSTEMS 

The experimentally observed change in the velocity 
of sound propagation6 when the ultrasonic frequency 
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approaches the resonant frequency of allowed spin 
transitions closely parallels the behavior of electro­
magnetic waves propagating in a medium containing 
resonant atoms. The latter phenomenon of electro­
magnetic dispersion is well known and easily described 
by MaxwelFs equations for the electromagnetic field 
and the dynamical equations for the atomic system. 
When the atomic system is represented by a harmonic 
oscillator, the problem is particularly simple and readily 
formulated in terms of Maxwell's equations and 
Newton's equations of motion for the oscillator, these 
same ideas being extendable to purely quantum-me­
chanical systems by means of time-dependent per­
turbation theory. To treat the dispersion of sound, we 
employ a model analogous to that of the harmonic 
oscillator used in elementary treatments of electro­
magnetic dispersion and derive a set of equations of 
motion for the composite sound field and spin system, 
a simultaneous solution of which yields a dispersion 
relation. We expect the scheme to be extendable to spin 
systems obeying purely quantum laws of motion by 
the use of quantum theory. As we shall see, such a 
program can be carried out subject to the assumption 
that the spins are uniformly distributed and that there 
are many spins per sonic wavelength. The system of 
spin 5 = 1/2 is the counterpart of the harmonic oscillator 
in the optical case. 
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We discuss the interaction between paramagnetic atoms and elastic waves at microwave frequencies by 
means of a total Hamiltonian comprising sound field, interaction, and spins. From this Hamiltonian and 
the Heisenberg commutation rules we obtain a set of coupled equations of motion. The condition of com-
patability leads in the usual way to a secular determinant, the solution of which is a dispersion relation 
exhibiting the familiar anomalous change in velocity and absorption of waves near resonance. 
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Semiclassical Treatment of S = 1/2 

We start with the Hamiltonian of the complete 
system (sound+interaction+ spin) and derive from it 
a set of coupled linear equations of motion, the simul­
taneous solution of which yields a dispersion relation 
between wave velocity and frequency. For simplicity 
we consider compressional sound waves propagating 
along the x direction. We take the Hamiltonian to be 

fPn2 K 

n [ m 2 

+fie(Un+i-U^l)Sx^+gmSi 
(n) (1) 

where we assume one atom of mass m and spin 1/2 per 
unit cell. Un is the displacement and Pn is the mo­
mentum of atom n along x. K is the restoring force 
between nearest neighbors and H is the dc magnetic 
field along the z direction. Sz

in) and Sz
in) are, respec­

tively, the x and z components of the spin for the 
unpaired electron on atom w, and e is the coupling 
constant between the strain at position n and the spin 
components Sx

{n). The spin-lattice coupling is chosen 
so that a component in Ur^-i— Un-i at the resonance 
frequency of the spin is able to induce spin transitions. 
We do not inquire into the origin of this coupling, except 
to point out that by Kramers' theorem, e vanishes with 
H. The simplest assumption is that the lattice oscil­
lations modulate the xz components of the g tensors, 
in which case e varies linearly with H. From the com­
mutators we obtain the Heisenberg equations of motion 
for the operators P„, Un, and S(n\ which are 

1 
Pn=~CPn,5C] = ^ ( t / n + l + ^ « - l - 2 t / n ) 

ifi 
+ ft€(Ss(n+1)-S*(n-l)), 

1 Pn 
t/»=7-[J7n,0C] = —, 

ifi m 

i m 
iS,^=-CW»>>ae]= -g—sj»\ 

ifi fi 

i m 
ifi fi 

1 

ifi 

where (S* ( nWn )) = £S2
(n), etc., fi=eh/2mc so that Sx, 

Syj Sz do not contain h. We assume for the moment that 
the spin-spin relaxation time (to be designated by r) is 
infinite, a constraint which is removed when discussing 
attenuation. 

The preceding equations can be rearranged to give 

tnUn=K(Un+i+Un-l-2Un) 

+he(Sx^-S^~»), (2) 

J25,^V^=cuoe(£/n+i- Un^S^-WS^K (3) 

They would be linear were it not for the term 
(Un+i— Un-i)Sz

{n). Noting that the sonic wavelength 
is long compared with the atomic spacing "a" and that 
the rate of change of Sz with time is of order e2, a 
reasonable physical approximation is to replace Sz by 
its average value per unit volume. A solution is now 
readily found by assuming that both Un and Sx

in) vary 
as ei{o}t~kna) where "na" is the position along x of the 
wth atom, k and w are then related by a typical dis­
persion relation, 

(fnu2-Kk2a2) (co2-a)o2)+4€2Sco0(Sz)^
2a2=0, (4) 

where we have taken the long wave limit and replaced 
sin&a by ka and set gpll—hm- With the definition 
vo2 — Ka2/tn, the square of the phase velocity in zero 
magnetic field, we obtain finally the relation for the 
sonic index of refraction as a function of frequency, 
where (S2) is the mean value of Sz per unit volume. 

a-i-
4*g0n(S.)/K-

Wo 

= 1— 
?gpH@,)/K 

coo2+4«2g/3H<S,>/.fi:-co2 (5) 

It is interesting to compare the above equation with 
that obtained in the case of optical dispersion near a 
single resonant frequency o>o,7 

c\2 ^irNe2/m 
= 1+ • 

Both equations take the same form when (Sz) is nega­
tive, i.e., when we have a normal population. The small 
difference between the two expressions results from the 
fact that in our model the spins are coupled to the 
elastic strain rather than to the amplitude of the atomic 
displacement. A plot of (v0/v)2 appears in Fig. 1 (a) for 
negative values of (Sz). A positive value of (Sz) corre­
sponds to an inverted population, and we shall return 
to a consideration of this point presently. Finally, we 
would emphasize that since we are dealing with coupled 
systems [Eq. (2)], the disturbance which propagates 
is a mixture of sound and transverse spin waves (i.e., 
waves in Sx and Sy, but not Sz). For small coupling e, 
most of the wave energy is contained in the elastic 
strain field and so propagates as a nearly pure sound 
wave. As e increases, and particularly near resonance, 

7 W. K. H. Panofsky and M. Phillips, Classical Electricity and 
Magnetism (Addison-Wesley Publishing Company, Inc., Reading, 
Massachusetts, 1955), Chap. 21. 
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(a) 

(b) -

FIG. 1. (a) Sonic index of refraction (VQ/V) as a function of elastic 
wave frequency o, where VQ is the phase velocity in the absence of 
spins, v is the phase velocity with spins, o>o is the spin resonance 
frequency, and (Sg)<0 (normal population). A2=s4:€2gfiH{Sg)/K; 
see text, (b) Dispersion relation between elastic wave frequency 
<a and wave vector k=*2vf\. A=[4e2gj8H(S*)/ini/2 is a stop band 
near the spin resonance frequency COQ; see text. (5*)<0 (normal 
population). In the case of a ferromagnetic spin system, the ex­
change coupling between spins makes possible the propagation of 
spin waves entirely apart from the phonon field. Hence, the straight 
line at coo is replaced by a parabolic dispersion law, discussed by 
Kittel.8 

more energy is propagated in the companion spin wave 
with the result that the disturbance is no longer purely 
sonic and is propagated at a modified velocity. (Similar 
ideas apply to phonon-magnon dispersion in a ferro-
magnet.)8 An alternative description of a dispersive 
medium is via the relation w=/(£), which can be 
obtained from the secular equation (4), a plot of which 
appears in Fig. 1(b). These relations show that the 
group velocity dco/dk changes radically as o) approaches 
the resonant frequency coo. For negative (Sx) (thermal 
equilibrium case) a wave packet slows down in the 
neighborhood of too, as reported earlier.6 Moreover, a 
stop band exists, between coo and 

<*o-L4fgPH\(S.)\/Kj» 

as indicated on the graph. Within the stop band, k is 
imaginary so that normal wave propagation is not 
possible. Thus, such a wave impinging on the boundary 
of a medium containing resonant spins would be re­
flected as light is reflected in the case of "frustrated 
internal reflection' ' or as x rays are reflected when the 
Bragg law is satisfied. As L —> oo, the reflection at 
surface X0 approaches 100%. This behavior is outlined 
in Fig. 2. Thus, insofar as we may neglect losses and 
nonlinear effects in the derivation of (4), we expect a 

8 C. Kittel, Phys. Rev. 110, 836 (1958). 

slowing down and distortion of a wave packet of ultra­
sonic energy as it travels through a resonant medium. 
When the sound frequency approaches o>0, the dis­
persion becomes severe, and finally, the wave is highly 
reflected when <a falls within the stop band A. k is then 
purely imaginary within the resonant medium. Al­
though our resonant spin system is not periodic, it has 
much in common with systems which are, such as 
electrical delay lines and crystals. Because of the slow 
propagation of sound these effects are readily observed 
in ultrasonic pulse experiments, as reported earlier, and 
are manifestations of dispersion, a common property 
of periodic and resonant systems. In nature any reso­
nant system will have a finite Q factor, or linewidth, 
which implies a finite loss for wave propagation in the 
resonant medium. In our model of S=l/2 it is con­
venient to treat this linewidth phenomenologically in 
terms of a relaxation time r. We can do so by adding 
the quantities Sx/r and Sy/r to the left side of the 
Bloch equations for Sx and Sy. By so doing we interpret 
r as the spin-spin or transverse relaxation time. How­
ever, even in the absence of this interaction, a finite 
linewidth would still exist, in which case r would 
represent the effect of spontaneous emission to the 
phonon field. In practice we should expect r to represent 
both of these level-broadening effects although in our 
discussion here we attribute r entirely to spin-spin 
interaction since we assume a fairly concentrated spin 
system. The equations of motion are then 

mUn=K(Un^i+Un+1-2Un) 
+MW»+1)-W»-1>)f 

which contract to the coupled wave equations (7). 

mUn=K(Un-1+Un+i-2Un)+he(Sj^~S^-^), 

S,<»>+2&<*>/T+ ( 1 / T 2 + C O 0
2 ) S ^ (7) 

= eO)Q(Sz}(Un^l— Z7n- l ) . 

Again assuming traveling wave solutions of the form 
ei(ut-kna) for jjn a n ( j sjn) w e a r r i v e a t the more general 
dispersion relation (8). 
Kk2a2 /v0\

2 

" tegW(jS.)/K 
:1 . (8) 

[co0
2+l/r2+4€2g/3fir(5z)/^]-co2+2WT 

- « 

FIG. 2. Behavior of ultrasonic oscillations within a resonant 
medium, of infinite Q, when the wave frequency falls within the 
stop band. The exponential decay e~ax within the medium for 
XQ^.X^.XO-}-L signifies reflection of the incident wave at X0, 
which becomes total reflection as L —> oo. 
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FIG. 3. (a) The real part (dis­
persion) and (b) the imaginary 
part (absorption) as a function 
of elastic wave frequency o>; 
(Sz> > 0 (normal population) 
solid line, (Sz)>0 (inverted 
population) dashed line. See 
text. 
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For convenience, let us assume | (4e2gfiH{Sz}T/ 
2a)K\<&l and rewrite (8) in terms of real and imaginary 
parts. Then 

(TK - # ) = ! • 

2e>gpH(S,) 

K 

( iio — <•> — 2tu/T \ 
), (9) 

(O0
2-aJ

2)2+(2w/r)V 

where O0
2= (co0

2+l/'r2+4e2gl3H(Sz)/K). The real and 
imaginary parts are plotted against co in Figs. 3 (a) and 
3(b). As before when co—>QQ the sound wave experi­
ences anomalous dispersion in the vicinity of resonance, 
but with now a concomitant rise in attenuation.9 

Moreover, with finite value of r a stop band no longer 
exists; wave propagation at frequencies within the 
resonance bandwidth is still possible although the 
physical meaning of group velocity is not clear if the 
dispersion is pronounced. However, an energy velocity 
can always be defined. The problem of wave propagation 
at frequencies within the region of anomalous dispersion, 
particularly as it applies to the propagation of pulses, 
is an interesting and delicate matter which we do not 
take up here, but which is dealt with at some length by 
Brillouin.10 We point out, however, that a pulse of 
sound incident on the surface Xo in Fig. 2 will be dis­
torted for three reasons. First, net absorption of energy 
may occur, leading to changes in (Sz). Secondly, the 
various side bands will be differentially reflected at Xo 
since the mechanical impedance of the resonant 

9 By attenuation we mean dissipation of energy from the ultra­
sonic wave unless otherwise stated. 

10 L. Brillouin, Wave Propagation and Group Velocity (Academic 
Press Inc., New York, 1960). 

medium will be frequency dependent, as seen from Fig. 
3(a). Thirdly, the frequency components within the 
linewidth will each have different phase velocities as 
well as suffering varying degrees of attenuation. The 
relative dispersion and attenuation will depend, of 
course, upon the magnitudes of coupling constant e and 
loss factor 1/r. 

The case of an inverted population, (52)>0, merits 
further comment. First, our analysis has assumed that 
(Sz) is constant in space and time, and this is now 
unlikely to be correct except possibly for very short 
time intervals. Nonetheless, a literal interpretation of 
Eq. (9) for positive (Sz) suggests that as u -* &o the 
measured velocity of pulses will increase because of the 
resulting inverted dispersion [Fig. 3(a)]. However, the 
analysis of Sommerfeld11 and Brillouin10 indicate that, 
to the contrary, it is not possible to propagate signals 
at velocities greater than fl0(a>—»°°). Thus for an 
elastic continuum, where v0 is independent of frequency, 
we would not expect to observe an increase in the pulse 
velocity with an inverted population. In contrast to 
the behavior of dispersion (in so far as the velocity of 
pulses is concerned), the absorption is directly related 
to the sign and magnitude of (St), as given by Eq. (8) 
and portrayed in Fig. 3(b). In this case the sign and 
magnitude of (Sz) represents the potential for amplifying 
or attenuating the sonic wave train. Thus an inverted 
spin system, (Sz)>0, predicts negative absorption 
(amplification) by stimulated emission. 

An experiment to demonstrate the amplification of 
sound pulses by stimulated emission from an inverted 
population in ruby was suggested by one us (E.H.J.) 
to Tucker and successfully carried out by the latter, 
in accordance with the behavior implied by Eq. (9).5'12 

It is to be noted that the amplification must not be too 
large (i.e., t2(Sz) must not be too large) in pulse experi­
ments if distortion caused by large dispersion is to be 
avoided. On the other hand, for cw narrow band ampli­
fication (Fig. 4), the product e2(S2) can be increased 
accordingly. However, some means is needed in this 
case to prevent reflected waves within the resonant 
medium so as to avoid the buildup of self-sustaining 
standing waves, i.e., feed back must be eliminated in 
order to suppress self-sustained oscillations, as with 
any amplifier. In contrast to amplification, the pro­
duction of self-sustained oscillation, if desired, should 

*o X0+L 

IWOT—• VW\A/W\W 

FIG. 4. Amplification of elastic wave by inverted spin system 
within the resonant medium X0^.X^.XQ-\-L. 

11 A. Sommerfeld, Ann. Physik 44, 177 (1914); we are also in­
debted to N. S. Shiren for discussion of this point. 

12 See also the discussion on phonon masers by C. H. Townes 
and N. Bloembergen, in Quantum Electronics, edited by C. H. 
Townes (Columbia University Press, New York, 1960), p. 405-9; 
C. Kittel, Phys. Rev. Letters 6, 449 (1961). 
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be easily realizable from an inverted spin system under 
proper conditions of reflection or feedback. Such an 
oscillator, at microwave sound frequencies, would 
involve essentially the same features encountered in 
the optical maser since the wavelengths are comparable. 
In particular, we would expect to observe a series of 
modes excited within the natural spin-resonance line-
width, the spacing of which depends upon the ratio of 
sonic wavelength of crystal length. Further develop­
ment of quantum methods of sonic amplification will 
doubtless continue and may afford the opportunity for 
detailed exploration of ultrasonic phenomena at fre­
quencies well beyond the present microwave range. 

Our model of 5 = 1/2 coupled to a longitudinal wave 
through the x-z component on the g tensor is somewhat 
idealized and, though illustrative in all the essential 
ideas of dispersion and attenuation, is not a common 
example of what we find in nature. A typical spin 
system involves a more complicated Hamiltonian 
containing terms arising from the action of the crystal 
field on the spin through the spin-orbit interaction. As 
it turns out, these terms are usually much more sensitive 
to lattice distortion than are the components of the 
g tensor and so provide the main coupling between 
sound field and spins. An example of such a system is 
pe++ j n MgO which is described by an effective S= 1, 
and we now address ourselves to the mathematical 
treatment of this more general problem. 

Semiclassical Treatment of S = 1 

We start by considering the total Hamiltonian for 
S= 1, in a cubic crystalline field, with a compressional 
sound wave propagating along the [100] direction: 

fPn2 K 

3e=E —+-(un-un^y+gm-${n) 

n \2tn 2 
2>ft 

+y[(W«>)^|](f/n+1-t/n_1) }. 

As in the previous example of 5 = 1/2, we assume linear 
restoring forces between nearest neighbors only, and 
that each atom has a spin. However, in contrast with 
6*= 1/2 we here introduce coupling to the lattice via 
the £> term instead of through a component of the g 
tensor. Moreover, we may expect that for a general spin 
Hamiltonian a quantum-mechanical treatment will be 
required similar to that used in describing optical 
dispersion in a real atomic system, in contrast to the 
harmonic oscillator model. To this end we describe 
presently a quantum-mechanical approach which is 
applicable to a general spin system. We describe first, 
however, a method analogous to choosing normal modes 
in a many-body linear system obeying classical laws. 
This method was pointed out to one of us (E.H.J.) in 
some detail by M. H. L. Pryce of the University of 
Bristol for the case of 5 = 1 and Hdc perpendicular to 
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FIG. 5. Rotation of xt 
z axes relative to cubic 
axes. Hdc parallel to z 
axis. Compressional 
elastic wave propa­
gating along [100], see 
text. 
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the direction of sound propagation. We have found that 
this method can be applied to a more complicated spin 
Hamiltonian with 5 = 1, although extension to systems 
with 5 > 1 is rather difficult owing to, apparently, the 
algebraic properties of the spin operators for such 
systems. 

In describing this essentially "classical" method we 
are concerned with deriving and linearizing equations 
of motion for operators like Un, Sx\ Sy

2
y SxSy+SySx, 

etc. For convenience let us take the case pertaining to 
F e + + in MgO with Hdc 45° to [100] and with atomic 
displacements along [100] only. The Hamiltonian is 
then 

fPn2 K 
3 C = Z — + - ( * 7 n - £ / n - l ) 2 

n [2m 2 

v2 
+— gWiStooi^+Snoo^) 

2 

£>ft ] 
+ — [ (^ [ lOOJ^^-HCC/n+l -^n-Oj . ( ID 

The algebra is simplified if we take a new set of axes 
with z parallel to Hdc, as shown in Fig. 5, and transform 
the spin operators Suoo] and 5[ooi] into the new x, z 
frame. Since these operators transform as components 
of a pseudovector, we have that 

S[iooi= W2/2)(S,+S,); S[m}=(>/2/2)(S.-Ss), 

so that 
>[100] — 2 W « "T~»^x I ^a^2"T*»^z^ajJ> (12) 

r D 2 If 

w=z\—+-(Un-un^y+gt3HS2(
n) 

2m 2 
3 D * 

+ — [ ( ^ ( n ) ) 2 + (S,("))*+.S,*(wWn) 

4 

+S™Sx™-£\(U^i-U^l)\, (13) 

where Un still denotes the displacement of the nth atom 
from its equilibrium position along the [100] direction. 
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As before, using the commutation rules for the time Sx
2Sy+SySx

2 reduce simply to Sy. To carry the analysis 
dependence of an operator, we derive a set of simul- further it is necessary at this point to linearize the 
taneous equations of the motion. The equation for Un above equations by dropping out all second-order terms 

such as UnSy
in) and by assuming that Sz

in) is in a 
definite state SZ} constant in space and time when it 
appears on the right-hand side of Eqs. (15). These 

becomes 

r=n-fl £>& 

+ L A 
r=n-l 4 

2Un) 

(Sf+SJ+SJS.+SJS,- *)<'> 
equations taken together with that for Un yield the 
following set of linear simultaneous equations: 

X(«r- • l , n ~ 5r+l.„). (14) -mUn+K(Un+l+Un^-2Un) 

Equations (13) and (14) suggest that we may need 
equations of motion for products of operators like 5^, 
SxSy+SySx, SxSz+SJSx, etc. Some experimentation 
shows that the following set of equations are sufficient 
and lead to the correct dispersion relation, which can 
be derived by an alternate method. 

d(5,«">)*/*= -«o(S»Sv+S,S,)<«> 

dW>)V*=«o(5^+5^S,) (->> 

d(sz^y/dt=i®(un+1- un^)SyM, 
d(SxS>l+Sl/Sx)M/dt= 2wo(2S,*+5,J- 2)<»> 

- i » ( t / „ + l -£ /»_ , ) 
X(5/->+5,<-'), 

d(SySZ + SZSy)M/dl = MSySZ+SZSy)M 

X(5,««'-5«<»>), 

d(sxsz+szsxy")/dt=-o>o(sysz+s:!svy»\ 

+— £ is.*+{s.¥+sjs.+sjs.-w> 
4 r - n - i 

X(5r-l ,n—5r+l,n) = 0, 

3D d2 

_ ( 5 x ( « ) ) 2 m(Sz)(Un+l- Un-0 
dt2 4 (16) 

d2 

—I 
dt2* 

+2ctf0
2[2(W»>)2+<52>

2~2]=0, 

-(S£%-SJSt)™+<*f(S£9+SJS%y'» 

(15) +-a>o<^>(*7«+i--*7«-i)==0. 
4 

By a slight change in the quantity {SX
2+SZ

2+SZSZ 

+SxSz-i) to read { 5 2
2 + ^ , 2 - l + 5 2 5 a ; + ^ ^ } and 

assuming traveling wave solutions of the form ei{oii~kna) 

where "wa" measures the position of the nt\i atom 
along the [100] direction and "a" is the atomic spacing, 

The derivation of these equations makes explicit use of we easily arrive at the following secular equation, where 
the algebra for the spin operators associated with 5 = 1 . we have already taken the long-wavelength limit by 
For example, products of the form Sz

2Sy+SySz
2 and replacing finite differences with derivatives. 

(Ka2k2-mw2)/h ik(£>a/4) ik(£>a/4) 
«(3>fl /4) (4a>o2-a>2)/a>0(S2> 0 
ik(£>a/4) 0 (wQ

2-^)/o)o(Sz) 

= 0. (17) 

This secular determinant yields the following dispersion 
relation13: 

k2a2K 

mw 

L \ 4 / K W - o > 2 4coo2-«VJ 

A plot of Eq. (18) in Fig. 6 shows the familiar anomalous 
dispersion near wo and 2a>o corresponding to transitions 
between the spin levels —1, 0, 1 in Fig. 7 for 5 = 1 . 
Equation (18) can be inverted and solved for a> vs k 

the plot of which appears in Fig. 8. The above equations 
and graphs show a variety of dispersion phenomena 
having to do with the interaction of sound waves with 
resonant systems, and similar in almost all detail to 

(•Jf 

i.o-

w0 2«ft 

13 The constant (D/4)*gdH(St)/K appearing in Eq. (18) can be 
made to agree with the corresponding constant in Shiren's dis­
persion relation (see reference 6) by making the following sub­
stitutions in Eq. (13): Let (Dah/4) (spins) (Un+i — Un-i) /a 
= G (spins) (£/»+i— Un-i)/a from which D/4~G/ha. 

FIG. 6. Sonic index of refraction (vQ/v) VS elastic wave frequency 
a) for 5 = 1 system. Two resonances appear, one for transitions 
between S«=0 and + 1 or —1, and the other between S ^ - f l 
and Sz~ — 1, for a compressional elastic wave propagating along 
the [100] cubic axis (see Fig. 5). 
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that encountered in the optical spectrum of electro­
magnetic radiation. Because of the comparative slow­
ness of sound and the ease of changing level popu­
lations at microwave frequencies, it is possible to study 
experimentally the dispersion surfaces in rather great 
detail. The above relations were derived with the 
assumption of no loss or level broadening. We know 
from our earlier study of 5 = 1/2 system that the general 
behavior is not greatly modified when a loss term or 
relaxation time is introduced, the main effect being to 
eliminate the stop bands and provide either absorption 
or amplification for waves propagating near the resonant 
frequencies, instead of causing complete reflection at a 
boundary as depicted in Fig. 2. 

Treatment of General Spin System via 
Contact Transformation 

As remarked earlier the dispersion relation for S=l 
was derived by a semiclassical approach which is 
difficult to carry out for general spin systems. Thus, 
for these cases we turn finally to a purely quantum 
mechanical method. 

The scheme is to use a contact transformation to 
transform the original total Hamiltonian [TEq. (16)] 
into a new function which does not contain the spin 
Hamiltonian but which is time dependent, involving 
the resonance frequencies in the form eiul2K We carry 
out this transformation by means of an operator 
T—exp(i3Cot/h) which is used to define new variables 
o»= TSiT*, etc., and a new Hamiltonian 

3C'=3C+ihT*dT/dt. 

The new Hamiltonian 3C' is no longer the energy, but 
still gives the equations of motion.14 Thus for the total 

FIG. 8. Dispersion re­
lation between elastic 
wave frequency a> and 
wave vector k — 2ir/\. 
{Sz)<0 (normal popu­
lation). Anomalous dis­
persion and stop bands 
occur in the neighbor­
hood of the resonant fre­
quencies «o and 2oj0 for 
compressional elastic 
wave propagation along 
[100] cubic axis (see 
Fig. 5). 

14 P. A. M. Dirac, The Principles of Quantum Mechanics 
(Clarendon Press, Oxford, 1947), 3rd ed., Chap. 5, Sec. 44; W. 
Heitler, The Quantum Theory of Radiation (Oxford University 
Press, New York, 1957), 3rd ed. 

Hamiltonian [Eq. (13)] for 5 = 1 , we are concerned 
with the following spin functions: 

Sz=exp(-iWot/h)5z exp(iXo///*) = Sz, 
S*=exp(-i3Crf/*)3* exp(i3Co/A) 

= §{S_ exp(iwoO+3+ exp—io>o0, 
where 

5 ± = (SxdtiSy), 
and 

X=gpHSz=ha>oSz. 

So that 3C' becomes 

\Pn2 K 
X ' = L +-(*7n-*7«-i)2 

n [2m 2 

+ — - « 7 n + 1 - Un^){S2+KSJei2^ 
4 

+ S+
2e-i2««t+ 3-S++S+S-+ 2 (SSZ+ 5,5-)e*»* 

+2(S+5,+5.S+)er*-*]-t}(»)|. (19) 

For convenience we henceforth drop the tilde, and 
proceed to get equations of motion for the operators 
Un, 5+2, and S+Sz+S3+: 

mUn=K(Un^+Un^-2Un) 

3D* n+l 

16 "-*-1 

+S+
2e-i2»°t+2(SSz+SzS-)ei«°t 

+ 2 (S+SM+S £+)*-*«+SS+ 

+5+5_}^>(5r_i,n-5r+1,n), 
d £> 
-(S±^)2= =FMtf«+!- U^){Sz)e^2^ 
dt 4 

+terms in (S±
(n)), 

d 2) 
~{STSZ+SZS^) <»> = ±i-(Un+1- Un^){Sz)e^^ 
dt 4 

+terms in (S±
(n)), 

where the spin operators on the right-hand side have 
been replaced by constants, such as (Sz). This implies 
that the integration to follow is correct only for small 
time intervals. We integrate the last two equations by 
assuming U'n~~ei{ui~kna) to yield 

(S±^)2= =F— (Sz) sinka— hconst, 
2 i(o)zk2o)o) 

( S ^ . + S . S i ) ^ = T— (Sz) sin&a— + const, 
2 i(o)zkcoo) 

and substitute these results in the equation for Un 
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which then gives the dispersion relations, Eq. (18), 
derived earlier. In the method just outlined the " terms 
in (S±

{n))" are dropped on the assumption that they 
vanish at the starting time for the integration. The 
range of integration must be such that no appreciable 
change in population occur. 

The above procedure can be applied to a general and 
more complicated example to yield a general result. 
Suppose 

+3C0(spin), 

and that the eigenfrequencies ho)ij=Ei—Ej of 3Co (spin) 
are known. If now the contact transformation is applied 
to 3C such that 3Cr = 3C+ihT*dT/dt, the new Hamil-
tonian function 3C' will take the form 

X ' = X ( l a t t i ce )+E M^n+i- f/n-i){«i2 (n )^12 t 

n 

+ai2*inh~i°l2t+an(n)eiuut+an*e~i(al3t 

+a23in)eiunt+a2z*('n)e~io,ntJi 

+products of a ( n ) , s} , (20) 
where the a (n) 's are functions of the spin operators 5« (n), 
Sy

(n\ Sz
(n). If we specify that all spins are initially in a 

definite state "V\ we deduce a general dispersion law 
of the form 

/z;0\2 r An - r 1 

( - ) = ! + £ , (2D 
\ V / L */ Q)ij— OJ2J 

where Aij={l\ai/n\aij*(n)\l) and where the operation 
(dijin\aij*in)) yields a quantity independent of position 
such as, for example, (Sz) in the case of 5 = 1 / 2 . The 
foregoing discussion has omitted level-broadening 
effects which could be included in the Hamiltonian or 
added phenomenologically to the equations of motion 
as was done in the example for 5 = 1 / 2 ; in either case 
the result would produce a more general dispersion law 
of the form 

\ v ) L a o){j
2+ (1/nj)2—OJ2— (2ua/ni)J 

where m is a relaxation time associated with the i—>j 
transition, and the dynamical behavior would follow 
closely that already encountered in the S— 1/2 system. 
The foregoing ideas apply equally well to a three-
dimensional sound field interacting with a general, but 
not too dilute, spin system, in which case we can expect 
a variety of sonic phenomena such as Raman scattering, 
parametric effects, and rotary polarization in addition 
to dispersion, loss, and amplification. 

III. DISCUSSION 

In our analysis we have, essentially, assumed that at 
some definite time, to, the spins are in known states and 

that a lattice wave is being propagated. We have then 
solved the equations on the assumption that the spins 
do not change their states significantly. We find that 
near the resonance frequencies of the spins it is not 
realistic to think in terms of purely lattice oscillations, 
for each such disturbance is accompanied by a wave 
motion in the transverse components of the spin 
moments. The coupling of the lattice and spin dis­
turbances, which in the uncoupled system would have 
different velocities, results in their being a change in 
the apparent velocity of sound. There is an associated 
attenuation, by which we mean that the amplitude of 
the disturbance decays with distance due to irreversible 
degradation of energy. With an infinite spin-spin 
relaxation time there is no energy dissipation within 
the resonant medium. With a finite spin-spin relaxation 
time energy dissipation occurs, and one may ask where 
this energy goes to. Unfortunately, it has not proved 
feasible to treat the dipolar interaction between the 
spins completely, and we have been forced to use the 
phenomenological description given by r, the spin-spin 
relaxation time. There is, however, good experimental 
evidence to support this phenomenological description. 
If, then, it is accepted that the introduction of the 
concept of spin-spin relaxation is a valid one, the energy 
dissipation occurs because to propagate a wave near 
resonance a wave motion must be set up in the trans­
verse spin moments. Energy is required to do this. 
Furthermore, the spin-spin relaxation is constantly 
trying to destroy such coherences and we must suppose 
that a continual supply of energy is necessary to main­
tain the spin wave. I t is possible for the destruction of 
spin coherence to take place by mutual spin flips, so 
that ^Sz does not change. That is, no work is done on 
or by the external field, H. However, this does not mean 
that the energy of the spin is unaltered, for the dipolar 
energy may be changed. Thus the energy loss we are 
considering is a process whereby energy in a sound wave 
near resonance is transferred to the mutual dipolar 
energies of the spins, where it is effectively randomized 
in the sense that if a quantum hcoo is taken from a 
lattice oscillator it is broken down into many smaller 
units and given to the dipolar interactions. Quite what 
happens to it then is not entirely clear, but it seems 
plausible that as every lattice mode is slightly coupled 
to the spins the energy may be fed back to all the lattice 
modes through various higher order interactions to 
establish a lattice temperature. The above process must 
clearly be distinguished from direct absorption of sound, 
resulting in there being changes in £ w Ss

(n). Both 
processes may occur simultaneously, and it would be 
necessary to distinguish them in any typical pulse echo 
experiment. 

Finally, a remark seems appropriate on the oft-
alluded-to phonon bottleneck. In the theory of the 
direct process in spin-lattice relaxation the spins ex­
change energy with lattice modes "on speaking terms," 
that is, with lattice modes having frequencies close to 
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co0. Orbach15 has used thermodynamic arguments to 
show that heating of phonon modes near OOQ via the 
direct process and under typical conditions will proba­
bly be small. We suggest that the dissipative effect of 
spin-spin interaction will diminish still further the 
heating of these modes and so correspondingly reduce 
the likelihood of a phonon bottleneck. 

IV. CONCLUSIONS 

We have developed a theory of ultrasonic dispersion 
resulting from the interaction between transverse spin 
moments and elastic strain fields oscillating at micro­
wave frequencies. Neglecting nonlinear effects, the 
theory predicts a reduction in the group velocity and 
and increase or decrease in the absorption of elastic 
waves near the spin resonance frequency for normal and 
inverted spin populations, respectively. The effect of 
damping is treated phenomenologically in terms of the 
spin-spin interaction time r. The change in elastic wave 
propagation near the spin resonance frequency is known 
as anomalous dispersion and is the manifestation of two 
coupled wave fields, one an elastic wave, the other a 
spin wave in the transverse components of spin, which 
propagate with the same phase velocity. Finally, we 

15 R. Orbach, Proc. Roy. Soc. (London) A264, 481 (1961). 

suggest that the dipolar spin-spin interaction may act 
in a dissipative manner to extract energy irreversibly 
from the phonon modes near the spin resonance fre­
quency and thereby reduce the likelihood of a phonon 
bottleneck under typical conditions of magnetic 
resonance. 

ACKNOWLEDGMENTS 

The authors are indebted to Dr. N. S. Shiren for 
informative and stimulating discussion of his experi­
ments on the dispersion of sound by F e + + in MgO 
which were directly responsible for undertaking the 
theoretical study presented above. I t is also a pleasure 
to thank Dr. R. Orbach for various comments and 
suggestions, particularly concerning the matter of spin-
lattice relaxation. In addition, one of us (E. H. J.) 
expresses his gratitude to Professor M. H. L. Pryce for 
helpful suggestions concerning a semiclassical method 
of treating certain spin systems, and to the Division of 
Scientific and Industrial Research of Great Britian for 
receipt of an O.E.E.C. senior visiting fellowship during 
which tenure this study was carried out; it is also a 
pleasure to record the generous hospitality of the 
Physics Department at the University of Nottingham 
as well as a leave of absence from the General Electric 
Research Laboratory during the tenure of this grant. 


